Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transl Vis Sci Technol ; 13(4): 29, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38656313

RESUMEN

Purpose: To describe the ocular findings of murine pseudoxanthoma elasticum (PXE) models with ATP-binding cassette subfamily C member 6 (Abcc6) gene knockout. Methods: This experiment was conducted in four Abcc6-/- rats and compared with six wild-type Abcc6+/+ control rats. The animals underwent necropsy at 6 months of age. Histological examination of the eyes was performed. Results: Histological examination of eight eyes from four Abcc6-/- rats revealed multiple nodular foci of calcification in the uvea, sclera, and conjunctiva, focally in perivascular distribution, as well as linear and nodular calcification of Bruch's membrane. Calcific foci were not associated with inflammation in the knockout rats. There was no evidence of calcification in control eyes. Discussion: The Abcc6-/- rat model shows that PXE can affect multiple ocular tissues beyond the calcification in Bruch's membrane noted in human eyes. Nodular calcific foci probably correspond to comet lesions seen in patients with PXE. The presence of ectopic calcium without inflammation distinguishes it from inflammatory calcium deposition in atherosclerosis. Further studies are needed to determine why PXE does not cause inflammatory infiltration. Translational Relevance: The Abcc6-/- murine model may be suitable for studying ocular PXE pathophysiology and ectopic calcification and developing effective therapies.


Asunto(s)
Modelos Animales de Enfermedad , Seudoxantoma Elástico , Animales , Masculino , Ratas , Lámina Basal de la Coroides/patología , Lámina Basal de la Coroides/metabolismo , Calcinosis/patología , Calcinosis/genética , Técnicas de Inactivación de Genes , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/deficiencia , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Seudoxantoma Elástico/genética , Seudoxantoma Elástico/patología , Seudoxantoma Elástico/metabolismo
2.
Neuro Oncol ; 25(11): 1989-2000, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37279645

RESUMEN

BACKGROUND: Resistance to existing therapies is a significant challenge in improving outcomes for glioblastoma (GBM) patients. Metabolic plasticity has emerged as an important contributor to therapy resistance, including radiation therapy (RT). Here, we investigated how GBM cells reprogram their glucose metabolism in response to RT to promote radiation resistance. METHODS: Effects of radiation on glucose metabolism of human GBM specimens were examined in vitro and in vivo with the use of metabolic and enzymatic assays, targeted metabolomics, and FDG-PET. Radiosensitization potential of interfering with M2 isoform of pyruvate kinase (PKM2) activity was tested via gliomasphere formation assays and in vivo human GBM models. RESULTS: Here, we show that RT induces increased glucose utilization by GBM cells, and this is accompanied with translocation of GLUT3 transporters to the cell membrane. Irradiated GBM cells route glucose carbons through the pentose phosphate pathway (PPP) to harness the antioxidant power of the PPP and support survival after radiation. This response is regulated in part by the PKM2. Activators of PKM2 can antagonize the radiation-induced rewiring of glucose metabolism and radiosensitize GBM cells in vitro and in vivo. CONCLUSIONS: These findings open the possibility that interventions designed to target cancer-specific regulators of metabolic plasticity, such as PKM2, rather than specific metabolic pathways, have the potential to improve the radiotherapeutic outcomes in GBM patients.


Asunto(s)
Glioblastoma , Piruvato Quinasa , Humanos , Piruvato Quinasa/metabolismo , Glioblastoma/metabolismo , Antioxidantes , Isoformas de Proteínas , Glucosa/metabolismo , Línea Celular Tumoral
3.
Cancers (Basel) ; 14(3)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35158867

RESUMEN

Vitreoretinal lymphoma (VRL) is a rare ocular pathology that is notorious for mimicking chronic uveitis, which is a seemingly benign condition in comparison. The most common form of VRL is the diffuse large B-cell type, and there has been a high mortality rate. This dismal prognosis can be improved significantly if the disease is diagnosed early, but until now there is no consensus on an appropriate diagnostic algorithm. We conducted a retrospective search of PubMed Central® and analyzed results from thirty-three studies that were published between 2011-2021. The chosen studies incorporated some popular testing tools for VRL, and our analyses focused on comparing the average sensitivity of five diagnostic methods. The methods included cytology including ancillary immunohistochemistry, Myeloid Differentiation Factor 88 (MyD88) mutation analysis, polymerase chain reaction (PCR) for monoclonal rearrangements of immunoglobulin heavy chain (IgH) and T-cell Receptor (TCR) genes, flow cytometry, and IL10 and IL6 analysis. Across the varied diagnostic methods employed in thirty-three studies explored in this analysis, MyD88 mutation assay emerged as a strong contender given its sensitivity and low coefficient of variation. There is an imminent need for the introduction of newer assays that can further improve the sensitivity of identifying MyD88 mutation in cancer cells seen in the vitreous.

4.
Mol Cancer Ther ; 21(1): 79-88, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34725193

RESUMEN

Despite aggressive treatments, pancreatic ductal adenocarcinoma (PDAC) remains an intractable disease, largely because it is refractory to therapeutic interventions. To overcome its nutrient-poor microenvironment, PDAC heavily relies on autophagy for metabolic needs to promote tumor growth and survival. Here, we explore autophagy inhibition as a method to enhance the effects of radiotherapy on PDAC tumors. Hydroxychloroquine is an autophagy inhibitor at the focus of many PDAC clinical trials, including in combination with radiotherapy. However, its acid-labile properties likely reduce its intratumoral efficacy. Here, we demonstrate that EAD1, a synthesized analogue of HCQ, is a more effective therapeutic for sensitizing PDAC tumors of various KRAS mutations to radiotherapy. Specifically, in vitro models show that EAD1 is an effective inhibitor of autophagic flux in PDAC cells, accompanied by a potent inhibition of proliferation. When combined with radiotherapy, EAD1 is consistently superior to HCQ not only as a single agent, but also in radiosensitizing PDAC cells, and perhaps most importantly, in decreasing the self-renewal capacity of PDAC cancer stem cells (PCSC). The more pronounced sensitizing effects of autophagy inhibitors on pancreatic stem over differentiated cells points to a new understanding that PCSCs may be more dependent on autophagy to counter the effects of radiation toxicity, a potential mechanism explaining the resistance of PCSCs to radiotherapy. Finally, in vivo subcutaneous tumor models demonstrate that combination of radiotherapy and EAD1 is the most successful at controlling tumor growth. The models also confirmed a similar toxicity profile between EAD1 and Hydroxychloroquine.


Asunto(s)
Autofagia/genética , Autofagia/efectos de la radiación , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/radioterapia , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Animales , Humanos , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Fármacos Sensibilizantes a Radiaciones/farmacología , Análisis de Supervivencia , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...